DRAINAGE REPORT

Brindley Residence 78XX 79th Ave SE, Mercer Island, 98040

City of Mercer Island Permit No. 2203-116-SUB1

Prepared by:

HLENGINEERING

March 2, 2022 July 22, 2022

Contents

- 1. INTRODUCTION
- 2. MINIMUM REQUIREMENTS
- 3. ON-SITE STORMWATER MANAGEMENT
- 4. FLOW CONTROL
- 5. CONVEYANCE SYSTEM ANALYSIS
- Appendix A DOE Flowchart for Determining Requirements For New Dev
- Appendix B Infiltration Feasibility Map
- Appendix C Western Washington Hydrology Model (WWHM) Output
- Appendix D Stormwater Plan
- Appendix E Stormwater Pump System Calculations
- Appendix F Operations and Maintenance Standards

1. INTRODUCTION:

These calculations and report document the storm drainage design for the single-family residential development project located at an un-addressed parcel on 79th Avenue SE in the City of Mercer Island.

The calculations and report have been prepared by HL Engineering for submittal of the building permit application, and in compliance with the City of Mercer Island's Stormwater Requirements (based on the Department of Ecology's 2014 Stormwater Management Manual for Western Washington).

The project is located on the east side of 79th Ave SE (see Figure 1). The site is surrounded on the north, south, and east by single family developments. The site is currently vacant as consists of a well-maintained lawn and several trees.

Figure 1: Location Map

The project improvements include the following:

- Removal of non-exceptional trees and fencing. The project proposes to re-use a stubbed sanitary side sewer.
- Construction of a new residential structure, along with walkways and driveway, along with Installation of service utilities, and an underground detention vault for roof stormwater runoff as a Best Management Practice (BMP).

See Appendix C for the Stormwater Plan, highlighted to show BMPs and proposed compliance.

2. MINIMUM REQUIREMENTS:

The project proposes one residential dwelling unit, with a total New + Replaced Hard Surface Footprint of 11,850 sf in a vacant / undeveloped parcel. As such, the minimum requirements for the project are summarized in Table 1.

Minimum Requirement (MR) Description	Code Section	Applicability
Preparation of Stormwater Site Plan	1-3.4.1 MR1	Applies
Construction Stormwater Pollution Prevention Plan	1-3.4.2 MR2	Applies
Source Control of Pollution	1-3.4.3 MR3	Applies
Preservation of Natural Drainage Systems	1-3.4.4 MR4	Applies
On-Site Stormwater Management	1-3.4.5 MR5	Applies
Runoff Treatment	1-3.4.6 MR6	Applies
Flow Control	1-3.4.7 MR7	Applies
Wetlands Protection	1-3.4.8 MR8	Applies
Operations and Maintenance	1-3.4.9 MR9	Applies

Table 1. Minimum Stormwater Requirements for Parcel-Based Projects:

This report will discuss the requirements that impact the strategy, selection, and sizing of proposed stormwater BMPs.

2.1 MR1: PREPARATION OF STORMWATER SITE PLAN

As a project that exceeds the 2,000 sf threshold of hard surfaces, the project is required to prepare Stormwater Site Plans. The permit drawings C4.00, C4.50, C4.60, and C4.70 provide stormwater system layouts and details for the project.

The stormwater system includes not only piping and detention system but also oil/water separation for pollutant-generating surfaces and a pump system to lift stormwater runoff from the detention tank to the shallow City main in 79th Avenue SE.

2.2 MR2: CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN

The project exceeds the 2,000 sf threshold for preparation of Construction phase Stormwater Pollution Prevention Plans. Erosion and Sedimentation Control plan Sheets C1.00, C1.50 are included in the permit drawings, which would be used by the contractor as part of a completed SWPPP.

Temporary erosion and sedimentation control measures proposed for this project include silt fence, straw wattles, and a stabilized construction entrance.

2.3 MR3: SOURCE CONTROL OF POLLUTION

The project site is vacant in the existing condition. There are no known tanks or soil contaminations that would require mitigation or protection in order to provide source control of those pollutants.

2.4 MR4: PRESERVATION OF NATURAL DRAINAGE SYSTEM

The existing site topography indicates sheet flow drainage to the west (to the public right of way of 79th Avenue SE). The City's public storm drain main in 79th Avenue SE is the approved point of discharge for the project and for neighboring properties, given that the site has no ability to infiltrate stormwater and does not have the size to provide dispersion systems. The project will convey stormwater flow to the existing storm main in 79th Avenue SE.

2.5 MR5: ONSITE STORMWATER MANAGEMENT

On-site Stormwater Management is required for this project, and the specific requirement is to comply with LID Performance Standard:

"Stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 8% of the 2-year peak flow to 50% of the 2-year peak flow. Refer to the Flow Control Performance Standard section in I-3.4.7 MR7: Flow Control for information about the assignment of the pre-developed condition. Project sites that must also meet I-3.4.7 MR7: Flow Control must match flow durations between 8% of the 2-year flow through the full 50-year flow."

The pre-developed condition is the forested condition, per SWMMWW Section I-3.4.7 "MR7: Flow Control", since the project site and downstream areas are estimated to have a Total Impervious Area of less than 40% since 1985.

Ideally a project could use infiltration techniques to comply with this Requirement, as the City of Mercer Island Infiltration Feasibility Map (Appendix B) indicates moderate infiltration potential at the site. However, the project geotechnical engineer (Geotech Consultants, Inc) concluded in their September 2, 2021 Geotechnical Engineering Study:

Often, the impermeable nature of the glacial till causes a shallow seasonal perched water table to form where the ground surface is not covered by an impervious layer. This is a common problem in the wet season throughout the Pacific Northwest. Considering this, and because the upper soil at the site is generally fill soil that cannot be used to infiltrate into, it is our professional opinion that onsite infiltration of stormwater is not feasible for the subject site.

The project reviewed the List Approach for MR5 Compliance (Table 1–3.2) within the SWMMWW for this project site, which is not considered to be exempt from Flow Control and is subject to MR #1 through MR #9, with the following conclusions in regards to options for stormwater BMPs:

Lawn and Landscape:

1. Post-Construction Soil Quality and Depth

Feasible and implemented

Roofs:

- Full Dispersion -or- Downspout Full Infiltration
 Not Feasible Site cannot infiltrate, and site does not have dispersion area of 6.5 x
 the hard surface area or a 50' flow path available within disturbed limits
- 2. Bioretention

Not Feasible – the project's professional geotechnical evaluation recommends infiltration not be used

- Downspout Dispersion Systems
 Not Feasible 50' flow path is not available onsite
- Perforated Stub-Out Connections
 Not Feasible the project's professional geotechnical evaluation recommends infiltration not be used
- 5. On-Site Detention (MICC 15.09.050) Feasible and implemented

Other Hard Surfaces:

1. Full Dispersion

Not Feasible – Site cannot infiltrate, and site does not have dispersion area of 6.5 x the hard surface area or a 50' flow path available within disturbed limits

2. Permeable Pavements

Not Feasible – the project's professional geotechnical evaluation recommends infiltration not be used

3. Bioretention

Not Feasible – the project's professional geotechnical evaluation recommends infiltration not be used

4. Sheet Flow Dispersion -or- Concentrated Flow Dispersion

Not Feasible – the project site does not have space for a 10'-wide vegetated buffer and 2'-wide transition zone downstream of the paved areas (largely due to tree protection zones)

5. On-Site Detention (MICC 15.09.050) Feasible and implemented

The selected On-Site Stormwater management mitigation for the project is a combination of below-grade detention system and Post-Construction Soil Quality and Depth. The Predeveloped and Mitigated flow rates are discussed more under MR7 "Flow Control" below.

** NOTE: Because the MR5 BMPs listed in the SWMMWW for Roof and Other Hard Surfaces are all determined to be infeasible, the actual flow release requirement will be based on MR7 requirements as noted below.

2.6 MR6: RUNOFF TREATMENT

Although this project proposes a total of 11,850 sf of New + Replaced Hard Surfaces, the area of Pollution-Generating Hard Surface (PGHS) consists only of the driveway, which is 2,310 sf. In accordance with the SWMMWW Section I-3.4.6 "Runoff Treatment", this project falls below the threshold for Treatment requirements.

In addition to the requirements of the SWMMWW, the City of Mercer Island Municipal Code Section 15.09.050.A requires passive spill control for driveways. As such, **this project proposes a French drain system to collect all driveway runoff, which then conveys to a 100 gallon proprietary, private oil / water separation unit**. The flow is then conveyed to the below-grade detention vault.

2.7 MR7: FLOW CONTROL

The project is required to achieve the Flow Control Performance Standard for the New + Replaced Hard Surfaces, for which the following must be met:

Stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow.

When coupled with the requirements noted under MR5, the project is required to match flow durations between 8% of the 2-year flow through the full 50-year flow.

Given the inability to infiltrate stormwater, the project is providing detention to the maximum extent feasible to comply with the Flow Control Performance Standard.

The project applied the Western Washington Hydrology Model (WWHM) iteratively to prove compliance using increasing bioretention and detention vault sizing. The WWHM output is included as Appendix D. Using a Predeveloped Forested Condition for a footprint equal to the area of disturbance along with the proposed stormwater BMPs, the input, output, and results of WWHM are summarized as follows:

PREDEVELOPED LAND USE

Pervious Land Use	acre
C, Forest, Flat	0.49

Impervious Land Use acreROOF TOPS FLAT0.02 (existing shed structure)

MITIGATED LAND USE TO DETENTION VAULT

Pervious Land Use	acre
A B, Pasture, Flat	0.17

Impervious Land Use acre	
ROOF TOPS FLAT	0.18
DRIVEWAYS FLAT	0.05
SIDEWALKS FLAT	0.04

MITIGATED LAND USE BYPASS

Pervious Land Use	acre
A B, Pasture, Flat	0.07

DETENTION VAULT PARAMETERS

Width:	7 ft.
Length:	110 ft.

Depth:		7 ft.	
Discharge Str	ucture		
Riser Height:		6.5 ft.	
Riser Diamete	er:	18 in.	
Orifice 1	Diameter: 0.2	25 in.	Elevation: 0 ft.
Orifice 2	Diameter: 0.1	125 in.	Elevation: 2 ft.
Orifice 3	Diameter: 0.1	125 in.	Elevation: 3 ft.

Return Period	100% Predeveloped Flow (cfs)	50% of Predeveloped Flow (cfs)	Mitigated Flow (cfs)	Compliant?
2-Year	0.019	0.010	0.005	Y
50-Year	0.051	-	0.043	Y

2.8 MR8: WETLANDS PROTECTION

The project conveys stormwater into the existing public storm drain main in 79th Avenue SE, which outlets downstream into a series of open watercourses prior to outlet into Lake Washington. The drainage pathway is continuously downhill and does not impact any mapped wetlands.

2.9 MR9: OPERATIONS AND MAINTENANCE

The project's stormwater systems that require regular maintenance include the oil / water separator and the detention tank (the stormwater pump system is not actually providing Flow Control, and therefore is not required to be included in the Operations and Maintenance requirements).

Potential Defects and Maintenance are included in Appendix E for the oil / water separator and for the detention vault.

3. CONVEYANCE SYSTEM ANALYSIS:

In accordance with the City of Mercer Island's Pre-Application meeting guidance, the project is required to convey stormwater to the existing shallow 8" storm drain main

located in 79th Avenue SE. The project has no ability to install storm drainage onsite in a manner to gravity flow to the existing main, so a pump system is proposed to elevate discharge just before entering the public right of way through a service drain connection to the public main.

Proposed storm drainage piping is designed with a minimum slope of 1.00% but due to site topography and available locations for bioretention, cannot be sloped at the standard 2.00% and accommodate the topography by gravity flow.

From the Rational Method:

Q25-Year =
$$(C)(i)(A)$$

Where:

- Rainfall intensity (i) can be derived from King County's Surface Water Design Manual isopluvial maps, Section 3.2. for a 25-year, 24-hour occurrence storm event to be a maximum of **3.40 in/hr**.
- Area (A) represents the largest tributary basin to any pipe. The largest collection system is the pipe network carrying flow along the southeast and south downspouts, which deliver the flow into the south bioretention planter and further downstream into the large underground detention vault. That pipe system conveys a total roof area = 3,250 sf (0.075 ac)
- Runoff coefficient (C) for the scenario is based on the tributary areas, and since the roof flow is the only contributing area the coefficient of **0.90** is appropriate.

The maximum site runoff within any pipe is calculated from Rational Method to be:

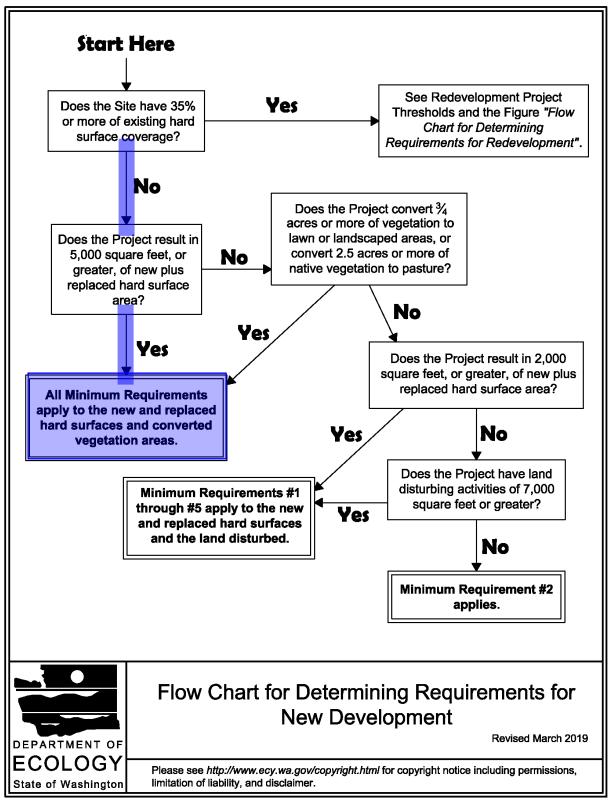
 $Q_{25-Year} = (C)(i)(A)$

 $Q_{25-Year} = (0.90)(3.40)(0.075)$

Q25-Year = 0.23 cfs

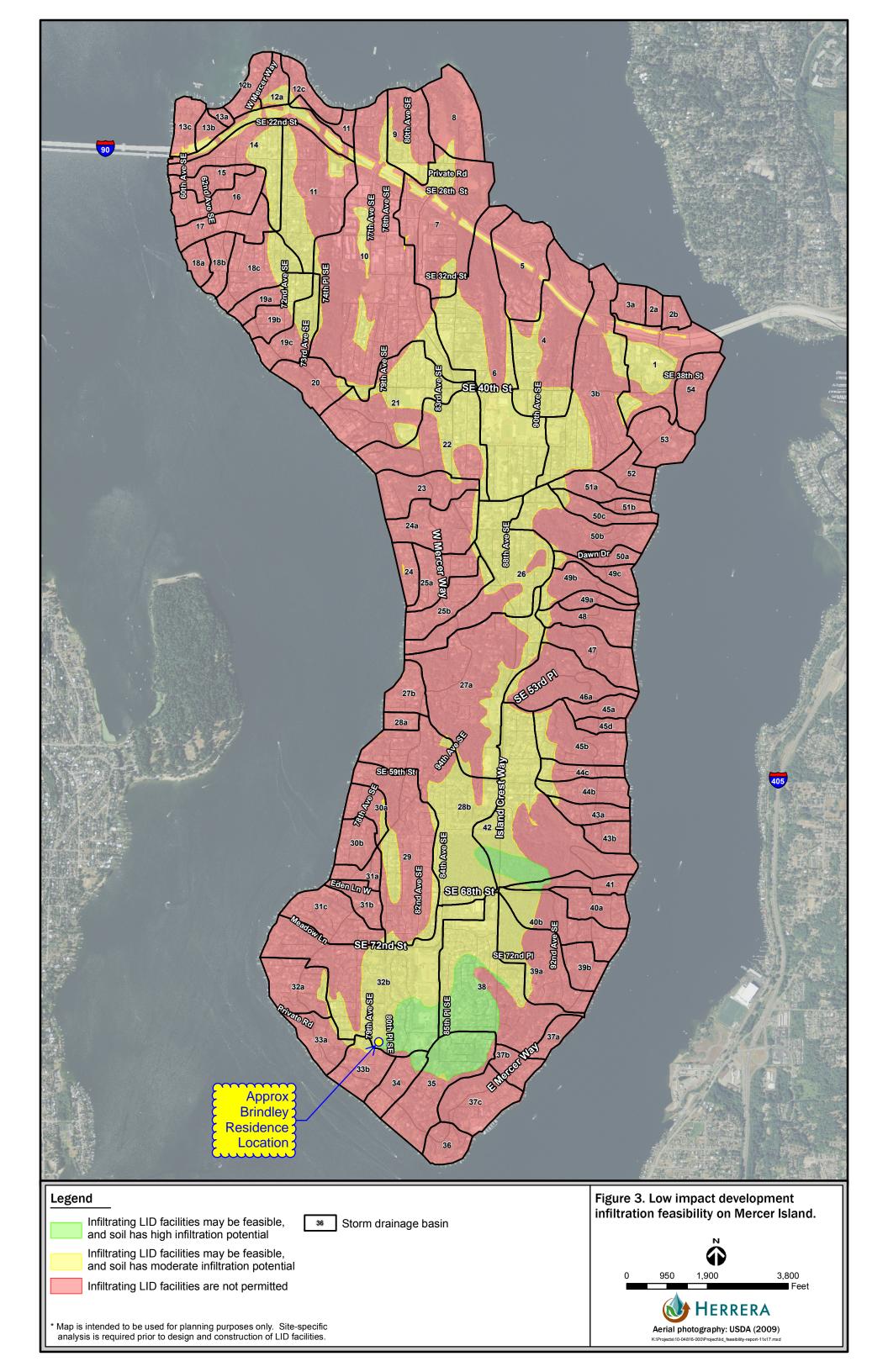
Using Manning's Equation:

78XX 79th Ave SE, Mercer Island, Washington


• A 4" diameter plastic solid-wall pipe, sloped at 1.00% and flowing 75% ful (25% clogged) has capacity to convey **0.23 cfs**.

Therefore, the proposed drainage system pipe sizing is considered to be feasible and appropriate.

APPENDIX A: DOE Flowchart; Requirements for New Dev


Figure I-3.1: Flow Chart for Determining Requirements for New Development

2019 Stormwater Management Manual for Western Washington

APPENDIX B: Infiltration Feasibility Map

APPENDIX C: WWHM Output

78XX 79th Ave SE, Mercer Island, Washington

<section-header>

General Model Information

Project Name:	79th Ave SW, Mercer Island
Site Name:	79th Ave SW
Site Address:	79th Ave SW
City:	Mercer Island
Report Date:	7/25/2022
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1: High Flow Threshold for POC1: 8 Percent of the 2 Year 50 Year

Landuse Basin Data Predeveloped Land Use

Existing Condition Bypass:	No	
GroundWater:	No	
Pervious Land Use C, Forest, Flat	acre 0.49	
Pervious Total	0.49	
Impervious Land Use ROOF TOPS FLAT	acre 0.02	
Impervious Total	0.02	
Basin Total	0.51	
Element Flows To: Surface	Interflow	Groundwater

Mitigated Land Use

Roof and Dwy Bypass:	No
GroundWater:	No
Pervious Land Use A B, Pasture, Flat	acre 0.17
Pervious Total	0.17
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS FLAT SIDEWALKS FLAT	acre 0.18 0.05 0.04
Impervious Total	0.27
Basin Total	0.44
Element Flows To: Surface Detention Vault	Interflow Detention Vault Groundwater
	\sim

Amended Soil Areas

Bypass:	Yes
GroundWater:	No
Pervious Land Use A B, Pasture, Flat	acre 0.07
Pervious Total	0.07
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.07

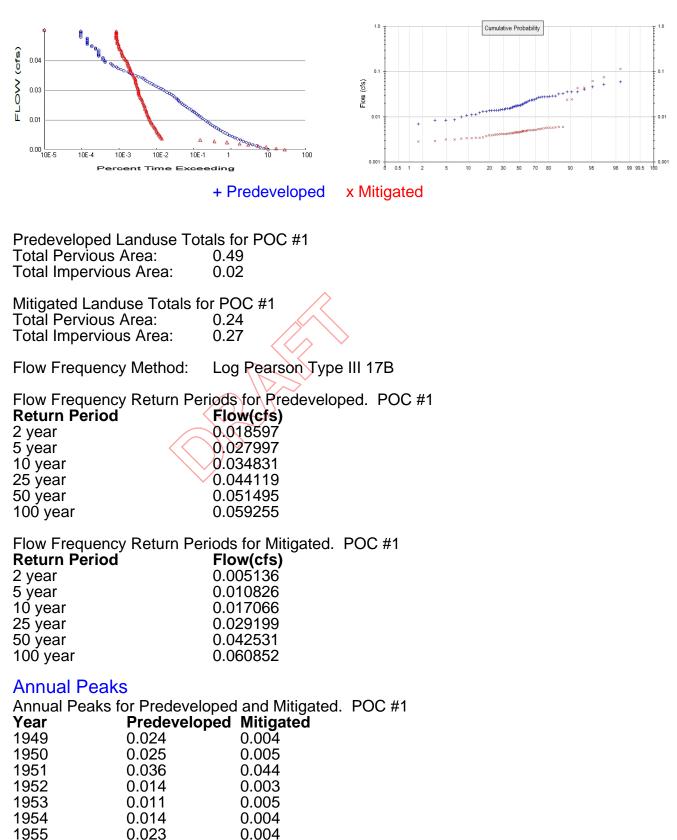
Element Flows To: Surface Interflow

Groundwater

Routing Elements Predeveloped Routing

OR ALL

Mitigated Routing


Detention Vault	
Width:	7 ft.
Length:	110 ft.
Depth:	7 ft.
Discharge Structure	
Riser Height:	6.5 ft.
Riser Diameter:	8 in.
Orifice 1 Diameter:	0.25 in. Elevation:0 ft.
Orifice 2 Diameter:	0.125 in. Elevation:2 ft.
Orifice 3 Diameter:	0.125 in. Elevation:3 ft.
Element Flows To:	
Outlet 1	Outlet 2

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs) Infilt(cfs)
0.0000	0.017	0.000	0.000	0.000
0.0778	0.017	0.001	0.000	0.000
0.1556	0.017	0.002	0.000	0.000
0.2333	0.017	0.004	0.000	0.000
0.3111	0.017	0.005	0.000	0.000
0.3889	0.017	0.006	0.001	0.000
0.4667	0.017	0.008	0.001	0.000
0.5444	0.017	0.009	0.001	0.000
0.6222	0.017	0.011	0.001	0.000
0.7000	0.017	0.012	0.001	0.000
0.7778	0.017	0.013	0.001	0.000
0.8556	0.017	0.015	0.001	0.000
0.9333	0.017	0.016	0.001	0.000
1.0111	0.017	0.017	0.001	0.000
1.0889	0.017	0.019	0.001	0.000
1.1667	0.017	0.020	0.001	0.000
1.2444	0.017	0.022	0.001	0.000
1.3222	0.017	0.023	0.002	0.000
1.4000	0.017	0.024	0.002	0.000
1.4778	0.017	0.026	0.002	0.000
1.5556	0.017	0.027	0.002	0.000
1.6333	0.017	0.028	0.002	0.000
1.7111	0.017	0.030	0.002	0.000
1.7889	0.017	0.031	0.002	0.000
1.8667	0.017	0.033	0.002	0.000
1.9444	0.017	0.034	0.002	0.000
2.0222	0.017	0.035	0.002	0.000
2.1000	0.017	0.037	0.002	0.000
2.1778	0.017	0.038	0.002	0.000
2.2556	0.017	0.039	0.002	0.000
2.3333	0.017	0.041	0.002	0.000
2.4111	0.017	0.042	0.002	0.000
2.4889	0.017	0.044	0.003	0.000
2.5667	0.017	0.045	0.003	0.000
2.6444	0.017	0.046	0.003	0.000
2.7222	0.017	0.048	0.003	0.000
2.8000	0.017	0.049	0.003	0.000
2.8778	0.017	0.050	0.003	0.000

0.017 0.017	0.052 0.053 0.055 0.056 0.057 0.059 0.060 0.061 0.063 0.064 0.066 0.067 0.068 0.070 0.071 0.072 0.074 0.075 0.077 0.078 0.079 0.081 0.082 0.083 0.085 0.086 0.088 0.089 0.090 0.092 0.093 0.094 0.094 0.096 0.097 0.099 0.091 0.092 0.093 0.094 0.096 0.097 0.099 0.100 0.101 0.103 0.104 0.105 0.107 0.108 0.110 0.111 0.112 0.114 0.115 0.116 0.118 0.119 0.121	0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.	0.000 0.000 0.000
0.017 0.017	0.116 0.118	0.261 0.519	$0.000 \\ 0.000$
	0.017 0.017	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Analysis Results

0.021

0.020

0.017

0.005 0.004

0.005

1956

1957

1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1987 1988 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	0.014 0.028 0.016 0.010 0.014 0.018 0.015 0.013 0.028 0.018 0.017 0.015 0.018 0.027 0.014 0.017 0.024 0.017 0.024 0.017 0.024 0.017 0.024 0.017 0.024 0.017 0.028 0.014 0.028 0.019 0.013 0.028 0.019 0.013 0.028 0.011 0.028 0.019 0.013 0.029 0.028 0.011 0.008 0.029 0.028 0.011 0.008 0.029 0.028 0.011 0.008 0.029 0.028 0.011 0.008 0.012 0.014 0.007 0.014 0.007 0.014 0.003 0.012 0.036 0.015 0.009 0.018 0.027 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.023 0.022 0.021 0.022 0.024 0.023 0.029 0.028 0.012 0.020 0.029 0.028 0.012 0.020 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0	0.004 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.005 0.004 0.004 0.004 0.004 0.003 0.024 0.004 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.0044 0.005 0.005 0.0044 0.005 0.005 0.005 0.0044 0.005 0.005 0.005 0.0044 0.005 0.05 0.05
--	---	---

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredeveloped Mitigated10.059820.05250.0757

3	0.0457	0.0623

OR AND

Duration Flows

Flow(cfs) 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.0070 0.0075 0.0081 0.0086 0.0071 0.0096 0.0101 0.0096 0.0101 0.0106 0.0111 0.0126 0.0121 0.0126 0.0131 0.0126 0.0131 0.0136 0.0141 0.0146 0.0151 0.0156 0.0161 0.0166 0.0171 0.0177 0.0182	Predev 214744 164565 128996 102730 82689 67204 55290 45900 38307 32062 27121 23079 19708 16914 14743 12906 11340 10029 8891 7886 7007 6263 5634 5073 4560 4119 3720 3377 3046 2772 2511 2263 2041 1858	Mit 590973 345001 187644 112954 61557 36254 16747 7668 3191 303 284 275 257 244 233 220 214 206 194 186 177 170 158 154 149 143 135 134 130 123 122 118 115 113	Percentage 275 209 145 109 74 53 30 16 8 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2	Pass/Fail Fail Fail Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.0161 0.0166 0.0171 0.0177	2772 2511 2263 2041	123 122 118 115	4 4 5	Pass Pass Pass Pass

0.0288 0.0293 0.0298 0.0303 0.0308 0.0313 0.0313 0.0323 0.0328 0.0323 0.0328 0.0343 0.0343 0.0353 0.0358 0.0363 0.0363 0.0368 0.0374 0.0379 0.0384 0.0399 0.0394 0.0394 0.0399 0.0404 0.0409 0.0414 0.0429 0.0441 0.0429 0.0444 0.0429 0.0444 0.0459 0.0454 0.0459 0.0454 0.0459 0.0455 0.0485 0.0490 0.0495 0.0505 0.0510 0.0515	$\begin{array}{c} 185\\ 162\\ 140\\ 121\\ 100\\ 88\\ 71\\ 59\\ 41\\ 32\\ 24\\ 20\\ 85\\ 15\\ 14\\ 3\\ 9\\ 9\\ 8\\ 8\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 5\\ 5\\ 4\\ 4\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{c} 63\\ 62\\ 60\\ 59\\ 59\\ 58\\ 56\\ 54\\ 52\\ 50\\ 47\\ 43\\ 43\\ 43\\ 43\\ 43\\ 43\\ 43\\ 43\\ 43\\ 43$	$\begin{array}{c} 34\\ 38\\ 42\\ 48\\ 54\\ 58\\ 63\\ 76\\ 88\\ 106\\ 114\\ 116\\ 148\\ 179\\ 209\\ 222\\ 253\\ 264\\ 284\\ 388\\ 388\\ 400\\ 387\\ 362\\ 450\\ 433\\ 416\\ 416\\ 400\\ 440\\ 440\\ 525\\ 525\\ 700\\ 633\\ 633\\ 633\\ 633\\ 633\\ 633\\ 633\\ 6$	Pass Pass Pass Pass Pass Pass Pass Pass
--	--	---	---	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

Treatment	Through Facility	Infiltration Volume (ac-ft)	Volume	Volume	Water Quality		Comment
38.65				0.00			
38.65	0.00	0.00		0.00	0.00	0%	No Treat. Credit
							Duration Analysis Result = Failed
	Treatment (ac-ft) 38.65	Treatment (ac-ft) Facility (ac-ft) 38.65 38.65	Treatment (ac-ft) Facility (ac-ft) (ac-ft) 38.65	Treatment (ac-ft) (ac-ft) Infiltration Credit	Treatment (ac-ft) Facility (ac-ft) (ac-ft) Infiltration Credit Infiltrated 38.65 0.00	Treatment (ac-ft) Facility (ac-ft) (ac-ft) Infiltration Credit Infiltrated 38.65 0 0.00	Treatment (ac-ft) Facility (ac-ft) (ac-ft) Infiltration Credit Infiltrated Treated 38.65 38.65 0.00 0.00 0.00 0.00 0.00 38.65 0.00 0.00 0.00 0.00 0.00 0%

~

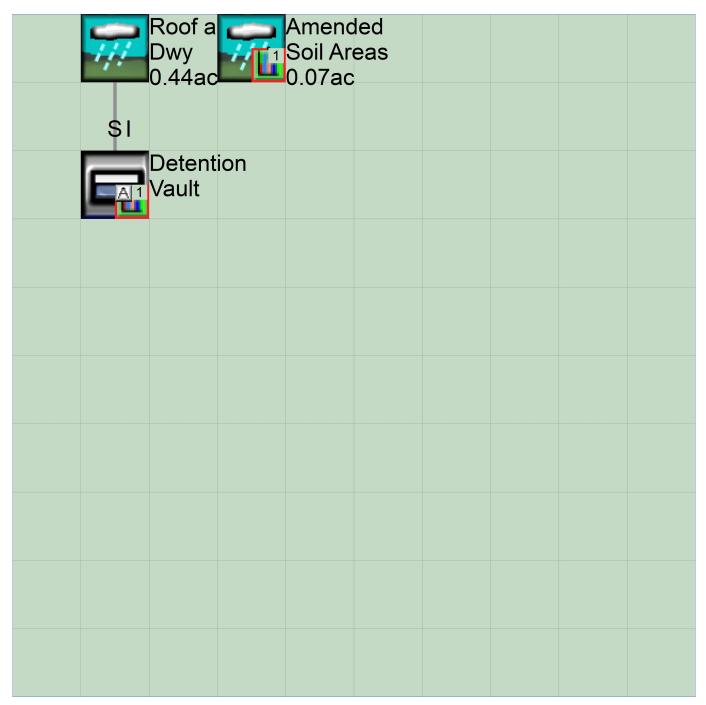
Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes


No IMPLND changes have been made.

Sharph -

Appendix Predeveloped Schematic

Existing Condition 0.51ac			

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END START 1948 10 01 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 WDM 79th Ave SW, Mercer Island.wdm MESSU 25 Pre79th Ave SW, Mercer Island.MES 27 Pre79th Ave SW, Mercer Island.L61 Pre79th Ave SW, Mercer Island.L62 POC79th Ave SW, Mercer Islandl.dat 28 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 10 PERLND 4 IMPLND COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Existing Condition MAX 1 2 30 9 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out 1 1 * * * 10 C, Forest, Flat 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY

 # - # ATMP SNOW PWAT SED
 PST
 PWG PQAL MSTL PEST NITR PHOS TRAC ***

 10
 0
 0
 1
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 10
 0
 0
 0
 0
 0
 0
 1
 9

 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 10
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2 <PLS > PWATER input info: Part 2 ***
- # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC
0 4.5 0.08 400 0.05 0.5 0.996 <PLS > 10 END PWAT-PARM2 PWAT-PARM3 <PLS > PWATER input info: Part 3 *** # - # ***PETMAX PETMIN INFEXP 0 0 0 2 INFILD DEEPFR BASETP AGWETP 2 0 0 0 10 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * * INTFW IRC 6 0.5
 # #
 CEPSC
 UZSN
 NSUR

 10
 0.2
 0.5
 0.35
 LZETP *** 0.7 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS GWVS 10 0 \land 0 \checkmark 0 0 2.5 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO Unit-systems Printer *** <PLS ><----Name-----> # - # User t-series Engl Metr *** in out 1 1 1 27 0 * * * 4 ROOF TOPS/FLAT END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** 4 0 0 1 0 0 0 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ********* 4 0 0 4 0 0 1 9 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** 4 0 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 * * * <PLS > IWATER input info: Part 2
 # - # ***
 LSUR
 SLSUR
 NSUR
 RETSC

 4
 400
 0.01
 0.1
 0.1
 4 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN 0 0

END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 4 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK <-factor-> <Name> # Tbl# * * * <-Source-> <Name> # Tbl# * * * <Name> # Existing Condition*** PERLND 10 0.49 COPY 501 12 501 0.49 13 PERLND 10 COPY 15 0.02 501 IMPLND 4 COPY *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor >strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * Nexits Unit Systems Printer RCHRES Name # - #<-----/ ------> User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR * * * * * * * * * END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * END HYDR-PARM1 HYDR-PARM2 * * * LEN DELTH STCOR DB50 # – # FTABNO KS <----><----><----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT * * * RCHRES Initial conditions for each HYDR section # - # *** VOL Initial value of COLIND Initial value of OUTDGT *** ac-ft for each possible exit for each possible exit <---><---><---><---> END HYDR-INIT END RCHRES

```
SPEC-ACTIONS
```

FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult->Tran <-Target vols> <-Grp> <-Member-> *** * * * <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # 2 PREC ENGL 1 PERLND 1 999 EXTNL WDM PREC 2 PREC 1 999 EXTNL PREC WDM ENGL 1 IMPLND 0.76 WDM 1 EVAP ENGL PERLND 1 999 EXTNL PETINP 1 999 EXTNL PETINP 1 EVAP 0.76 WDM ENGL IMPLND END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg*** COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->*** <Name> # #<-factor-> <Name> # #*** <Name> <Name> MASS-LINK 12 PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 13 MASS-LINK PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15 END MASS-LINK END RUN

END SPEC-ACTIONS

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 3 0 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 79th Ave SW, Mercer Island.wdm MESSU 25 Mit79th Ave SW, Mercer Island.MES $% \left({{\rm M}} \right)$ Mit79th Ave SW, Mercer Island.L61 Mit79th Ave SW, Mercer Island.L62 POC79th Ave SW, Mercer Islandl.dat 27 28 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 4 PERLND 4 IMPLND IMPLND 5 IMPLND 8 RCHRES 1 1 COPY 501 COPY COPY 601 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Pitle---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Detention Vault 1 MAX 1 2 30 9 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 601 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # # K *** END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 4 A/B, Pasture, Flat 1 1 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWATSEDPSTPWGPQALMSTLPESTNITRPHOSTRAC***40010000000 END ACTIVITY

PRINT-INFO
 # - # ATMP SNOW PWAT
 SED
 PST
 PWG
 PQAL
 MSTL
 PEST
 NITR
 PHOS
 TRAC

 4
 0
 0
 4
 0
 0
 0
 0
 0
 1
 9
 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 4
 0
 0
 0
 0
 0
 0
 0

 4 END PWAT-PARM1 VAT-PARM2 <PLS > PWATER input info: Part 2 *** " # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC - 15 400 0.05 0.3 0.996 PWAT-PARM2 4 END PWAT-PARM2 PWAT-PARM3 <PLS > PWATER input info: Part 3 * * *
 # - # ***PETMAX
 PETMIN
 INFEXP

 4
 0
 0
 2
 INFILD DEEPFR BASETP AGWETP 4 2 0 0 0 END PWAT-PARM3 PWAT-PARM4 PWATER input info: Part 4 * * * <PLS > CEPSC UZSN NSUR 0.15 0.5 0.3 # - # INTFW IRC LZETP *** 0 0.7 0.4 0.3 0.4 4 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPSSURSUZSIFWSLZSAGWS000031 GWVS 0 4 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out ROOF TOPS/FLAT 4 DRIVEWAYS/FLAT 5 8 SIDEWALKS/FLAT END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL * * * 4 5 8 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** 4 5 8 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** 4 0 0 0 0 0

5 0 0 0 0 0 0 8 0 0 0 Ο END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 * * *
 # - # ***
 LSUR
 SLSUR
 NSUR
 RETSC

 4
 400
 0.01
 0.1
 0.1
 0.01 0.01 0.1 5 400 0.1 8 400 0.01 0.1 0.1 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN 0 4 0 0 0 5 8 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 4 0 0 5 0 0 0 8 0 END IWAT-STATE1 END IMPLND SCHEMATIC <---Area--> * * * <-Target-> MBLK <-Source-> <Name> # <-factor-> <Name> # Tbl# * * * Roof and Dwy*** 2 perlnd 4 0.17 RCHRES 1 RCHRES 1 4 0.17 3 PERLND 1 5 IMPLND 4 0.18 RCHRES 5 0.05 1 5 IMPLND RCHRES IMPLND 8 0.04 RCHRES 1 5 Amended Soil Areas*** 5011260112 perlnd 4 0.07 COPY PERLND 4 0.07 COPY PERLND 4 0.07 COPY 501 13 4 0.07 COPY PERLND 601 13 *****Routing***** 12 15 15 perlnd 4 0.17 COPY 1 IMPLND 4 0.18 COPY 1 5 0.05 IMPLND COPY 1 IMPLND 8 1 15 0.04 COPY 4 0.17 COPY 1 13 PERLND 1 1 COPY 501 16 RCHRES END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO Name Nexits Unit Systems Printer * * * RCHRES # - #<----> User T-series Engl Metr LKFG * * * * * * in out

1 Detention Vault 1 1 1 1 28 0 1 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 1 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR * * * * * * * * * 4 0 0 0 0 0 0 0 0 1 9 1 END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * # - #VC A1 A2 A3 ODFVFG for each *** ODGTFG for eachFUNCT for eachFG FG FG FG FG possible exit*** possible exitpossible exit10 1 0 0 4 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * 0.0 0.0 0.5 0.0 1 1 0.02 END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * <----> 1 0 END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 1 92 4 Depth Area Volume Outflow1 Velocity Travel Time*** (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)*** 0.000000 0.017677 0.000000 0.000000 0.077778 0.017677 0.001375 0.000473 0.155556 0.017677 0.002750 0.000669 0.233333 0.017677 0.004125 0.000819 0.311111 0.017677 0.005499 0.000946 0.388889 0.017677 0.006874 0.001058 0.466667 0.017677 0.008249 0.001159 0.544444 0.017677 0.009624 0.001251 0.622222 0.017677 0.010999 0.001338 0.012374 0.001419 0.700000 0.017677
 0.777778
 0.017677
 0.013749
 0.001496

 0.855556
 0.017677
 0.015123
 0.001569

 0.933333
 0.017677
 0.016498
 0.001639

 1.011111
 0.017677
 0.019248
 0.001705

 1.088889
 0.017677
 0.019248
 0.001770

 1.166667
 0.017677
 0.020623
 0.001832
 1.244444 0.017677 0.021998 0.001892 1.322222 0.017677 0.023373 0.001950 1.400000 0.017677 0.024747 0.002007 1.477778 0.017677 0.026122 0.002062 1.555556 0.017677 1.633333 0.017677 0.027497 0.002115 0.002168 0.028872 1.711111 0.017677 0.030247 0.002219 0.031622 0.002268 1.788889 0.017677 1.866667 0.017677 0.032997 0.002317

```
END FTABLES
```

<name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name>	r> SsysSgap <mult>Tra # tem strg<-factor->str ENGL 1 ENGL 1 ENGL 0.76 ENGL 0.76</mult>	g <name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999</name>	<-Grp> <-Member-> *** <name> # # *** EXTNL PREC EXTNL PREC EXTNL PETINP EXTNL PETINP</name>
END EXT SOURCES			
EXT TARGETS <-Volume-> <-Grp> <name> # RCHRES 1 HYDR RCHRES 1 HYDR COPY 1 OUTPUT COPY 501 OUTPUT COPY 601 OUTPUT END EXT TARGETS</name>	RO 1 1 STAGE 1 1 MEAN 1 48.4 MEAN 1 48.4	n <-Volume-> <men g <name> # <nam WDM 1012 FLOW WDM 1013 STAG WDM 701 FLOW WDM 801 FLOW WDM 901 FLOW</nam </name></men 	ne> tem strg strg*** N ENGL REPL G ENGL REPL N ENGL REPL N ENGL REPL
<name> MASS-LINK</name>	<-Member-> <mult> <name> # #<-factor-> 2</name></mult>	<target> <name></name></target>	<-Grp> <-Member->*** <name> # #***</name>
PERLND PWATER END MASS-LINK	SURO 0.083333 2	RCHRES	INFLOW IVOL
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 0.083333 3	RCHRES	INFLOW IVOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 5 0.083333	RCHRES	INFLOW IVOL
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12 0.083333	СОРҮ	INPUT MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 0.083333 13	СОРУ	INPUT MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 0.083333 15	COPY	INPUT MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16	СОРҮ	INPUT MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

ORALI

Mitigated HSPF Message File

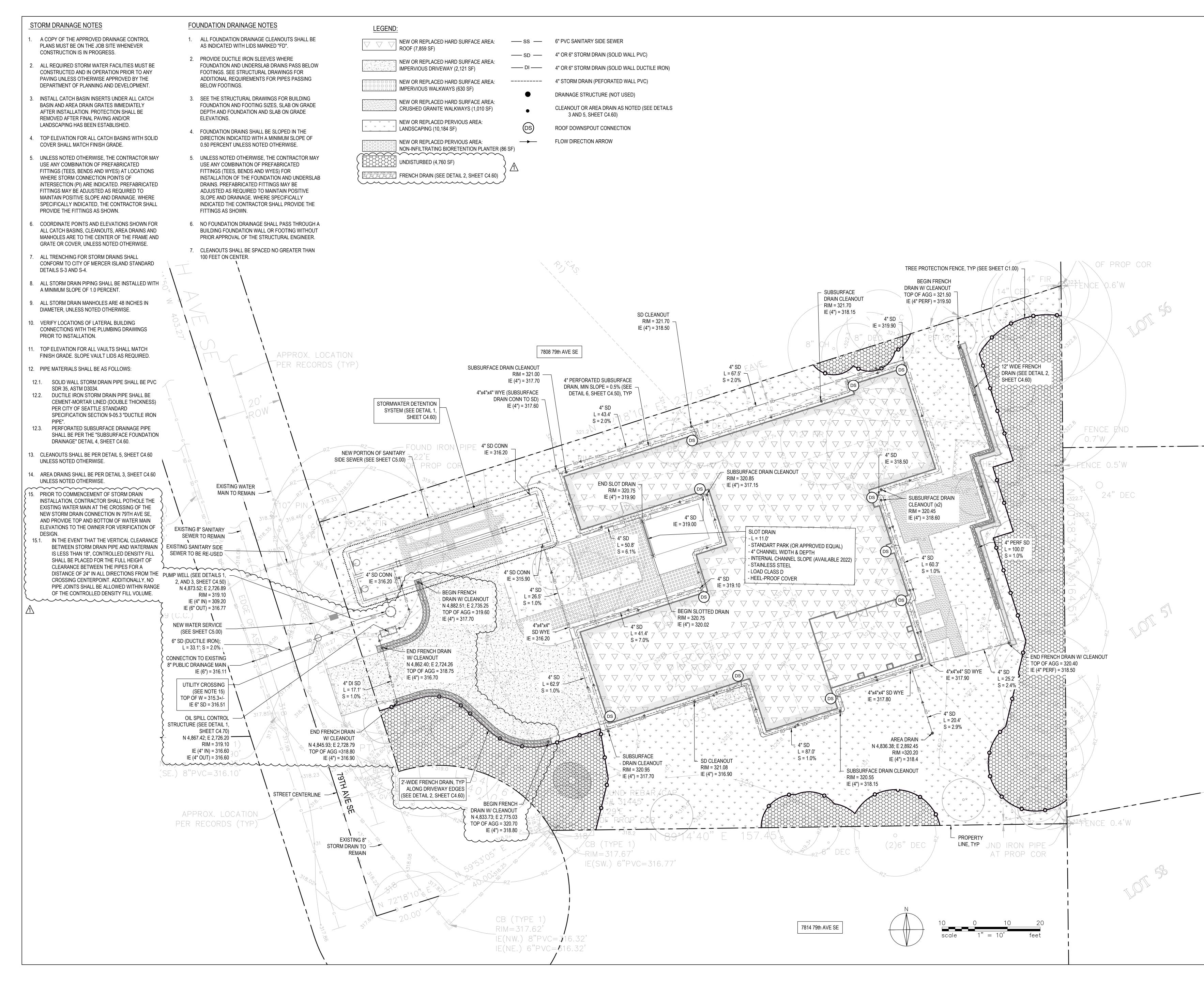
ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1999/ 9/30 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -5.473E-03 0.00000 0.0000E+00 0.00000 -1.085E-08 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 2002/ 8/31 24: 0 RCHRES : 1 RELERR STORS STOR MATTN MATDIF -2.464E-02 0.00000 0.0000E+00 0.00000 -2.441E-09 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it.

Relevant data are:

DATE/TIME: 2004/ 7/31 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -7.063E-03 0.00000 0.0000E+00 0.00000 -8.521E-09 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 2006/ 7/31 24: 0 RCHRES : 1 STOR RELERR STORS MATIN MATDIF 0.00000 -2.878E-09 -2.065E-02 0.00000 0.0000E+00 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

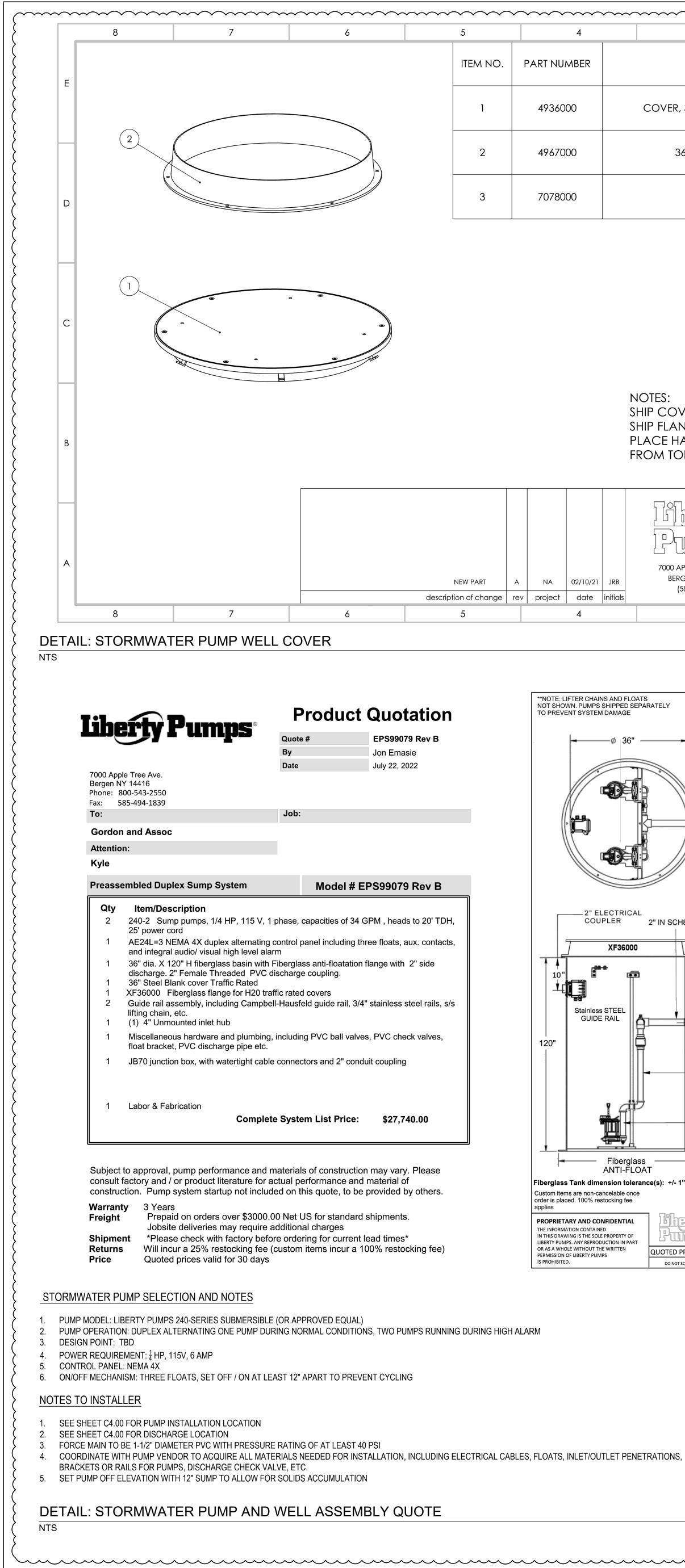
Disclaimer

Legal Notice


This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com



APPENDIX D: Stormwater Site Plan

7-22-2022

36X120 DUPLEX 240-2 EFFLUENT SYSTEM —*∮* ∃36" 36" Steel Blank cover Traffic Rated 2" ELECTRICAL COUPLER 2" IN SCH80 PVC XF36000 6" 2" Female Threaded PVC 1-1/2" SCH80 PVC PIPE (1) 4" Unmounted inlet AE24L=3 — (2) **240-2** ļ 1/4HP,115 V, 1PH CUSTOMER APPROVAL Fiberglass Tank dimension tolerance(s): +/- 1" AME(PRINT) 7000 APPLE TREE AVENUE NAME(SIGN): BERGEN, N.Y. 14416 ns®. (585) 494-1817 FINAL CONFIGURATIONS MAY VARY SLIGHLTY QUOTED PROVIDED BY: J.Emasie FROM THE ILLUSTRATIONS ON THIS PRINT **REVISION: B** DO NOT SCALE DRAWING

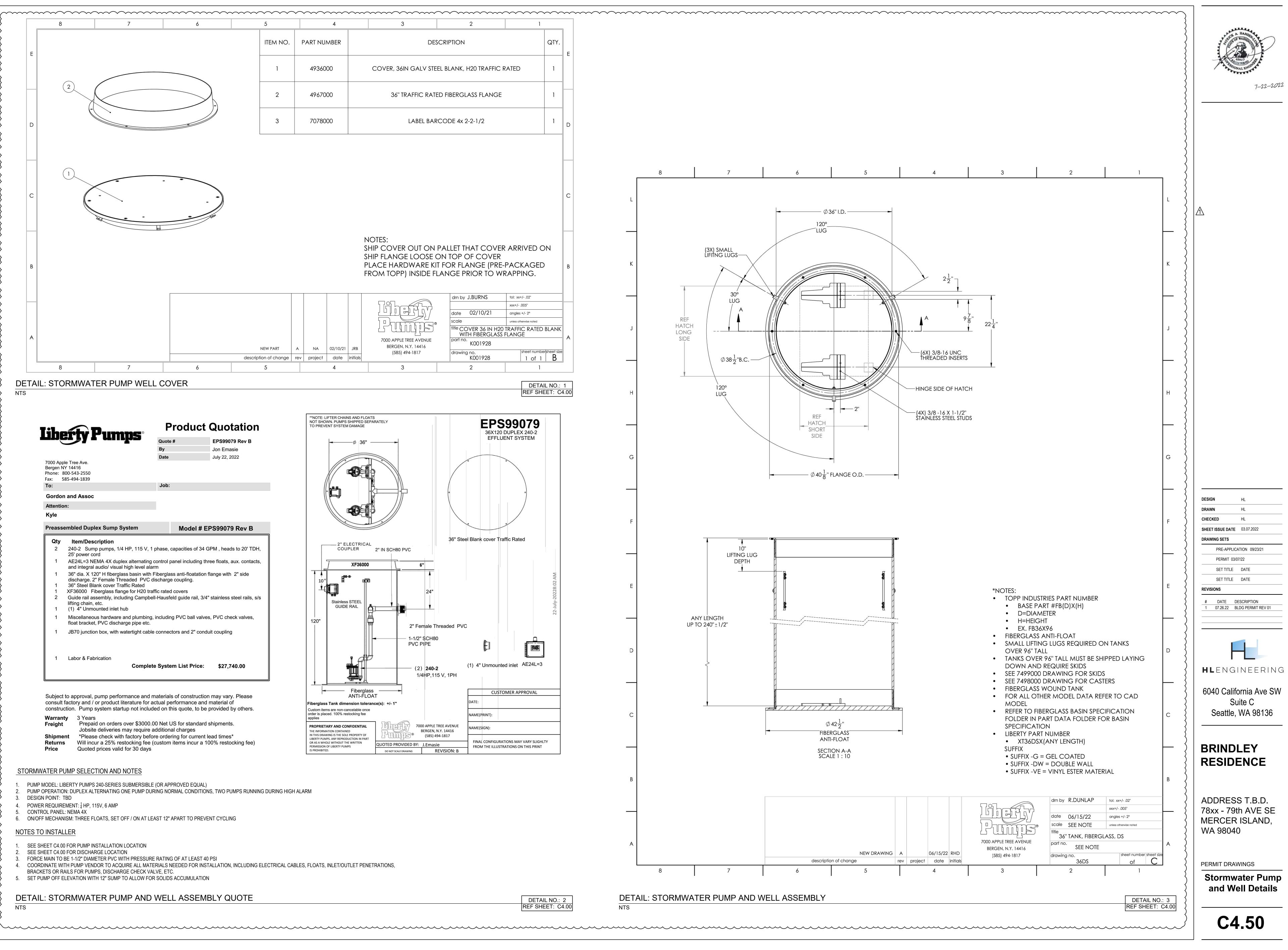
SHIP FLANGE LOOSE ON TOP OF COVER PLACE HARDWARE KIT FOR FLANGE (PRE-PACKAGED FROM TOPP) INSIDE FLANGE PRIOR TO WRAPPING. drn by J.BURNS tol: xx+/- .02" xxx+/- .005" date 02/10/21 angles +/- 2° unless otherwise noted scale ^{title} COVER 36 IN H20 TRAFFIC RATED BLANK WITH FIBERGLASS FLANGE 7000 APPLE TREE AVENUE part no. . K001928 BERGEN, N.Y. 14416 sheet number sheet si (585) 494-1817 drawing no. K001928 1 of 1 | **B** 3

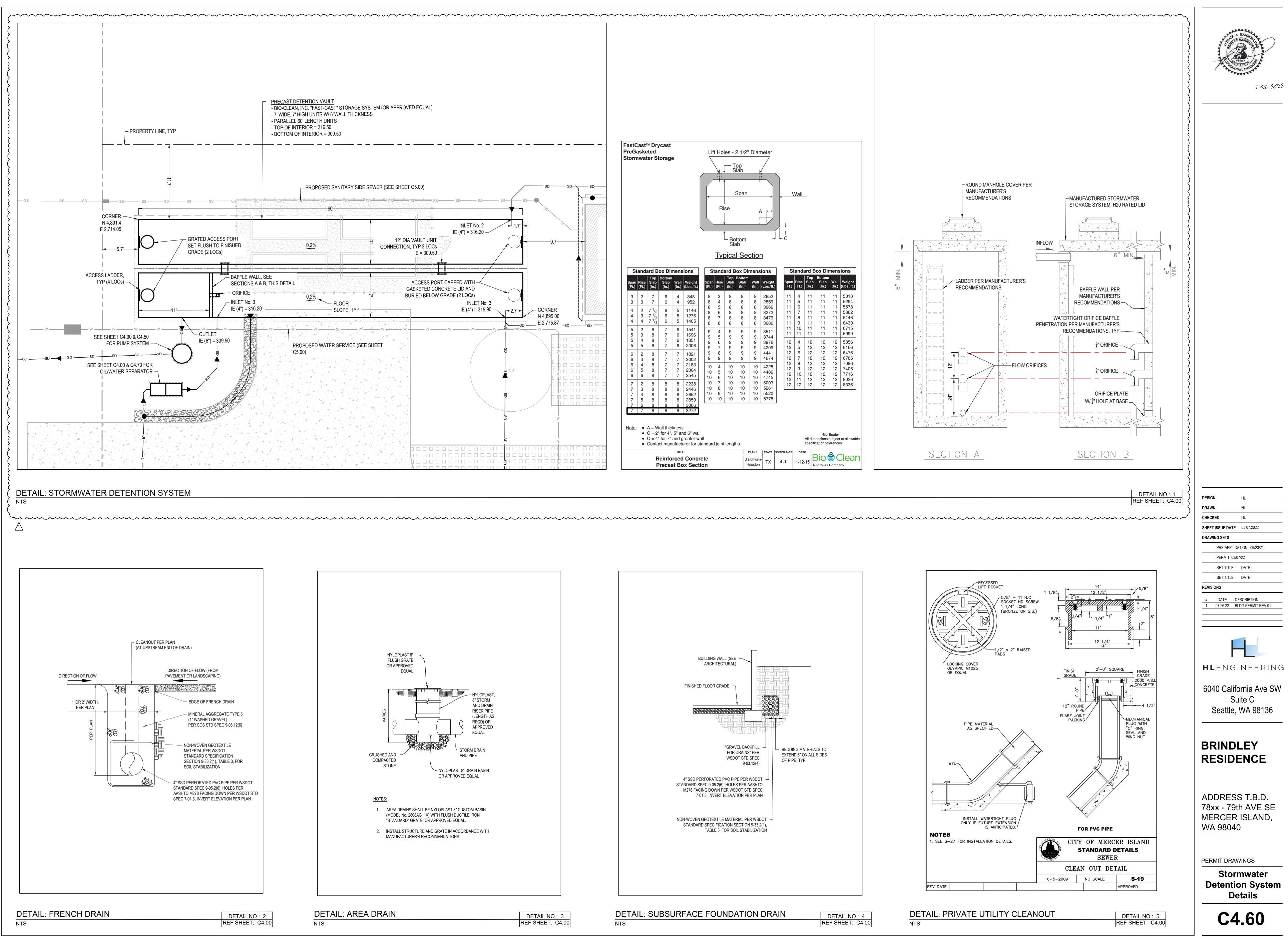

NOTES: SHIP COVER OUT ON PALLET THAT COVER ARRIVED ON

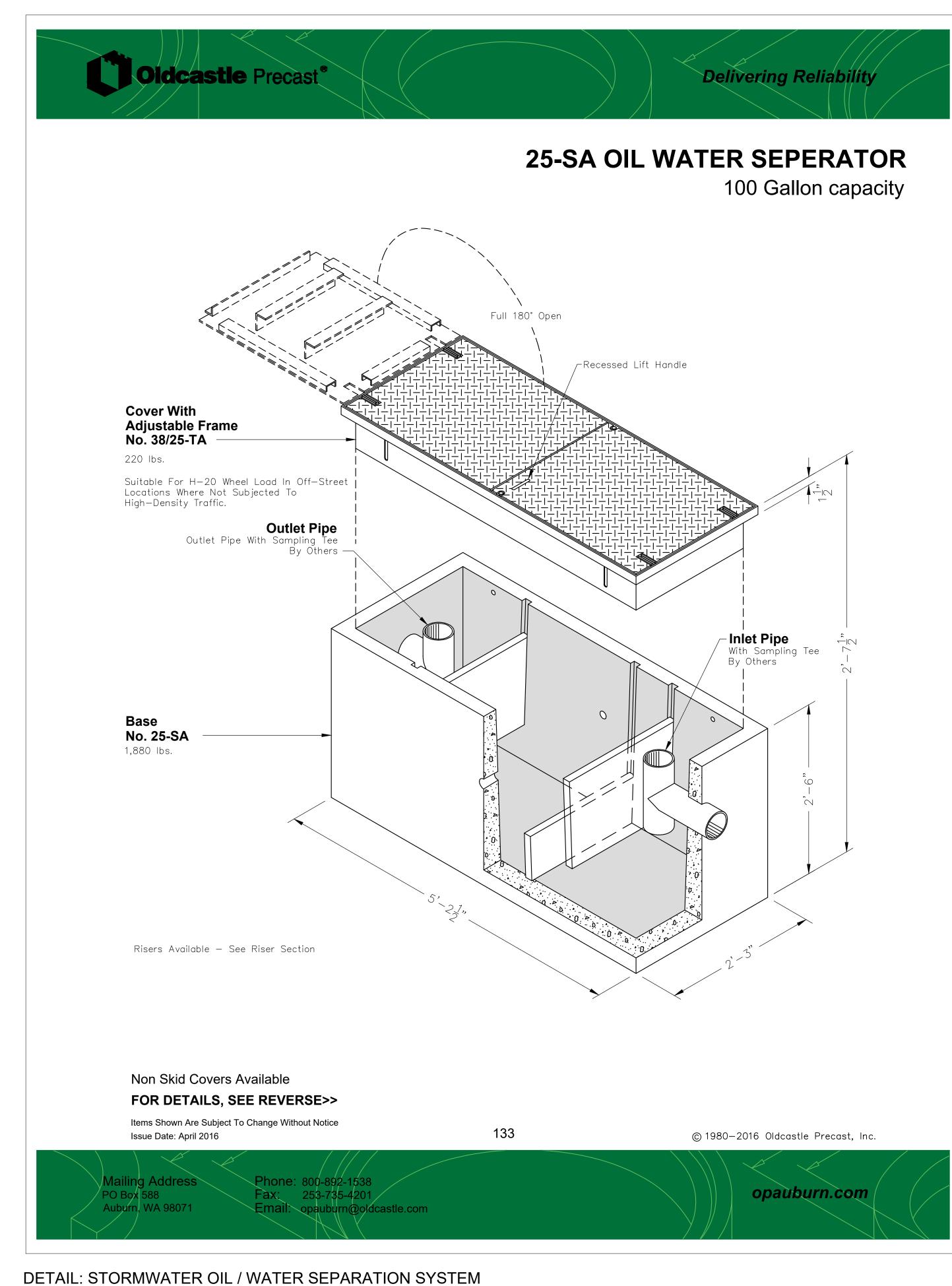
36" TRAFFIC RATED FIBERGLASS FLANGE LABEL BARCODE 4x 2-2-1/2

DESCRIPTION

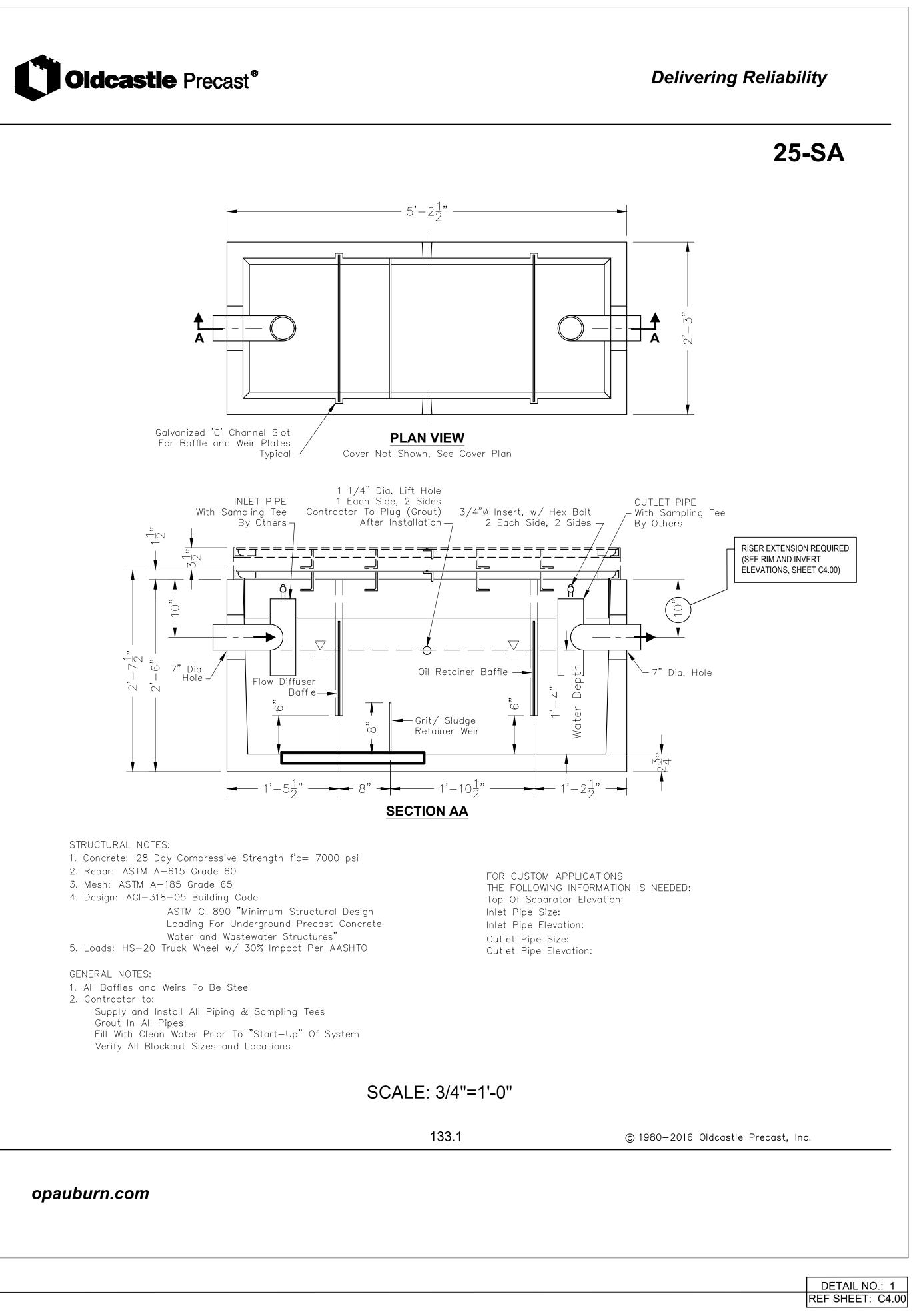
COVER, 36IN GALV STEEL BLANK, H20 TRAFFIC RATED


QTY.


DETAIL NO.: 1

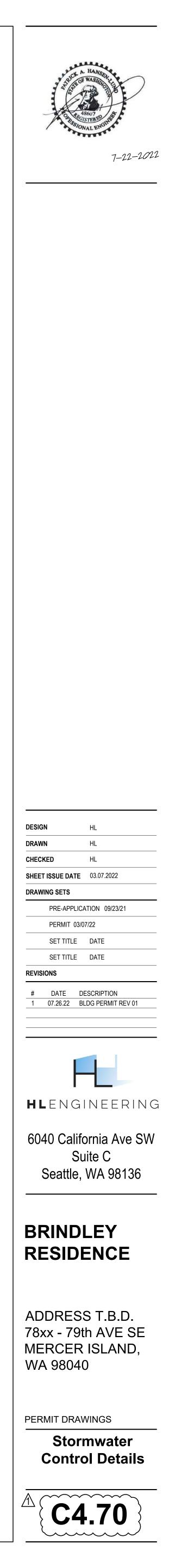

REF SHEET: C4.00

EPS99079



DETAIL NO.: 2 REF SHEET: C4.00

NTS



STRUCTURAL NOTES:

- 1. Concrete: 28 Day Compressive Strength f'c= 7000 psi
- 2. Rebar: ASTM A-615 Grade 60
- 3. Mesh: ASTM A-185 Grade 65

- GENERAL NOTES:
- 2. Contractor to:
- Grout In All Pipes
- Fill With Clean Water Prior To "Start-Up" Of System

opauburn.com

APPENDIX E: Stormwater Pump System Calculations

STORMWATER PUMP DESIGN

Project Name: Project Address:	Brindley Residence 78xx 79th Ave SE, Mercer	Island, WA	
Pump MH Inflow IE =		308.90	
Pump MH Outlet IE =		316.77	
Required Lift =		7.87	ft

Legend:	
	= Value to be provided
	= Value automatically calculated

Calculate Stormwater Flow Rates (Modeled in WWHM)			
100-Yr Mitigated Flow Rate =	0.0074	cfs	
Convert to GPM =	3.32	gpm	4
Proposed Outlet Pipe Dia =	2.00	in	

Use Hazen-Williams equation to estimate frictional head loss

Hazen-Williams roughness coefficient =	150					
Volume of flow =	3.32	gpm				
Wetted Perimeter of outlet pipe =	6.28	in				
Inside hydraulic dia of outlet pipe =	2.00	in				
Frictional Head Loss per foot =	0.03	ft per foot				
Length of pressurized pipe =	10	ft				
Additional Equivalent Length Due to Fittings =	0	ft				
Total Frictional Head Loss =	0.31	ft				
Total Dynamic Head =	8.18	ft				
Check flow velocity is between 2 fps	and 8 fps					

Volume of flow =	0.0074	cfs
Internal cross sectional area of pipe =	0.02	sq ft
Velocity =	0.34	fps

APPENDIX 2: EQUIVALENT LENGTH OF TUBING FOR FRICTION LOSS IN VALVES AND FITTINGS

TABLE 13.2A EQUIVALENT LENGTH IN FEET OF TUBING FOR FRICTION LOSS IN VALVES AND FITTINGS (TUBING).

	Equivalent Feet of Pipe for Various Nominal Diameters							
Fitting or Valve	% in	% in	1 in	1% in	1% in	2 in	2% in	3 in
45" elbow (wrought)	0.5	0.5	1.0	1.0	2.0	2.0	3.0	4.0
90" elbow (wrought)	0,5	1.0	1.0	2.0	2.0	2.0	2.0	3.0
Tee, straight run (wrought)	0.5	0.5	0.5	0.5	1.0	1.0	2.0	<u>400</u>
Tee, branch (wrought)	1.0	2,0	3,0	4,0	5,0	7,0	9,0	
45" elbow (cast)	0.5	1.0	2.0	2.0	3.0	5,0	8.0	11.0
90" elbow (cast)	1.0	2.0	4.0	5.0	8.0	11.0	14.0	18.0
Tee, straight run (cast)	0,5	0,5	0,5	1,0	1,0	2,0	2,0	2,0
Tee, branch (cast)	2.0	3.0	5.0	7.0	9.0	12.0	16.0	20.0
Compression stop	13,0	21,0	30,0					
Globe valve		_		53,0	66,0	90,0	1	
Gate valve		_	1.0	1.0	2.0	2.0	2.0	2.0

240-SERIES

Cast Iron Submersible Sump Pumps

A Family and Employee Owned Company

1/4 hp 1-1/2" Discharge

The most advanced 1/4 hp pump available!

Features

- Unique one-piece UNI-BODY casting
- Cast-iron housing
- Peripheral port inlets eliminate bottom suction
- 304 Stainless-steel intake plate
- Quick-connect 10' standard power cord allows replacement of cord in seconds without breaking seals to motor (25' length optional)
- Available in three switch styles including Liberty Pumps VMF switch

240 Manual

- 241 Wide-Angle Float Switch with Quick-connect
- 243 Wide-Angle Float Switch, Series Plug
- 247 VMF, Vertical Magnetic Float Switch

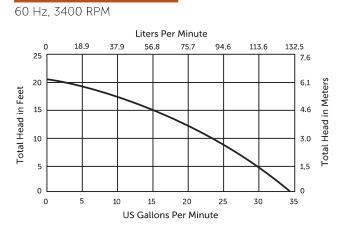
Wide-angle float switches are mercury-free, mechanically activated. bottom suction

Available with Wide-Angle Float Switch

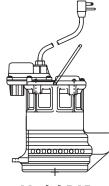
All Models Features

- Rugged 1/4 hp motor, oil-filled with thermal overload protection
- 1/4" Solids handling
- 1-1/2" Discharge
- Hermetically sealed motor and switch cavities, permanently lubricated bearings
- Liberty Pumps UNI-BODY casting a solid, one-piece housing that eliminates the lower motor seal ring found on other pumps
- Integral, mid-mounted "peripheral-port" inlets eliminate bottom suction of debris and foreign materials

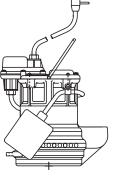
Motor Specifications

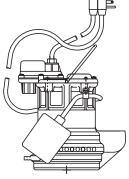

1/4 hp 115V 6A Thermally protected and permanently lubricated

Dimensional Data

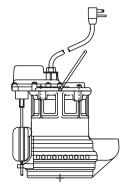

Weight: 21 lbs Height: 10" Major Width: 9" (manual model 240) Maximum Fluid Temperature: 140°F (60°C) Intermittent 104°F (40°C) Continuous duty

- Stainless-steel volute intake plate, internally mounted. Will not corrode
- 8 Vane, glass-reinforced thermoplastic impeller non-clog design
- Quick-connect 10' standard power cord allows replacement of cord in seconds without breaking seals to motor (25' length optional)
- For 25 cord option, add a "-2" suffix to model number Example: 247-2 for Model 247 with 25 cord
- Non-corrosive stainless-steel fasteners
- Stainless-steel rotor shaft


Performance Curve


Effluent Models

Model 240 Manual, no float switch



Model 241 Wide-angle float switch with Quick-connect

Model 243 Wide-angle float switch with series (piggyback) plug, allows manual operation of pump

Sump Models

Model 247 VMF-Series VMF switch, magnetically operated vertical float switch – operates in a 10" diameter sump

Copyright © Liberty Pumps, Inc. 2020 All rights reserved. LLIT000400-R02/20

APPENDIX F: Operations and Maintenance Standards

 Table V-A.3: Maintenance Standards - Closed Detention Systems (Tanks/Vaults)

	Needed	When Maintenance is Performed
Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.
Debris and Sediment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter. (Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)	All sediment and debris removed from storage area.
Joints Between Tank/Pipe Section	Any openings or voids allowing material to be transported into facility. (Will require engineering analysis to determine structural stability).	All joint between tank/pipe sections are sealed.
Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.
Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determines that the vault is not structurally sound. Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence	Vault replaced or repaired to design specifications and is structurally sound. No cracks more than 1/4-inch wide at the joint of the
	Debris and Sediment Joints Between Tank/Pipe Section Tank Pipe Bent Out of Shape Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame	Plugged Air Ventsis blocked at any point or the vent is damaged.Debris and SedimentAccumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter. (Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)Joints Between Tank/Pipe SectionAny openings or voids allowing material to be transported into facility. (Will require engineering analysis to determine structural stability).Tank Pipe Bent Out of ShapeAny part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top SlabCracks wider than 1/2-inch at the joint

Table V-A.3: Maintenance Standards - Closed Detention Systems (Tanks/Vaults)

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
	Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.
Manhole	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.
Catch Basins	See <u>Table V-A.5:</u> <u>Maintenance</u> <u>Standards - Catch</u> <u>Basins</u>	See <u>Table V-A.5: Maintenance</u> Standards - Catch Basins	See <u>Table V-A.5:</u> <u>Maintenance</u> <u>Standards - Catch</u> <u>Basins</u>

Table V-A.4: Maintenance Standards - Control Structure/Flow Restrictor							
Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed				
	Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.				
General	Structural Damage	Structure is not securely attached to manhole wall. Structure is not in upright position (allow up to 10% from plumb). Connections to outlet pipe are not watertight and show signs of rust. Any holes - other than designed holes - in the structure.	Structure securely attached to wall and outlet pipe. Structure in correct position. Connections to outlet pipe are water tight; structure repaired or replaced and works as designed. Structure has no holes other than designed holes.				
Cleanout Gate	Damaged or Missing	Cleanout gate is not watertight or is missing. Gate cannot be moved up and down by one maintenance person. Chain/rod leading to gate is missing or damaged.	Gate is watertight and works as designed. Gate moves up and down easily and is watertight. Chain is in place and works as designed. Gate is repaired or replaced to meet design standards.				

Table V-A.4: Maintenance Standards - Control Structure/Flow Restrictor

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
		Gate is rusted over 50% of its surface area.	
Orifice Plate	Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See <u>Table V-A.3:</u> <u>Maintenance</u> <u>Standards - Closed</u> <u>Detention Systems</u> (Tanks/Vaults)	See <u>Table V-A.3:</u> <u>Maintenance</u> <u>Standards - Closed</u> <u>Detention Systems</u> (Tanks/Vaults)	See <u>Table V-A.3:</u> <u>Maintenance</u> <u>Standards - Closed</u> <u>Detention Systems</u> (Tanks/Vaults)
Catch Basin	See <u>Table V-A.5:</u> <u>Maintenance</u> <u>Standards - Catch</u> <u>Basins</u>	See <u>Table V-A.5:</u> <u>Maintenance</u> <u>Standards - Catch</u> <u>Basins</u>	See <u>Table V-A.5:</u> <u>Maintenance</u> <u>Standards - Catch</u> <u>Basins</u>

Table V-A.16: Maintenance Standards - Baffle Oil/Water Separators (API Type)

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Monitoring	Inspection of discharge water for obvious signs of poor water quality.	Effluent discharge from vault should be clear with out thick visible sheen.
	Sediment Accumulation	Sediment depth in bottom of vault exceeds 6-inches in depth.	No sediment deposits on vault bottom that would impede flow through the vault and reduce separation efficiency.
	Trash and Debris Accumulation	Trash and debris accumulation in vault, or pipe inlet/outlet, floatables and non-floatables.	Trash and debris removed from vault, and inlet/outlet piping.
	Oil Accumulation	Oil accumulations that exceed 1-inch, at the surface of the water.	Extract oil from vault by vactoring. Disposal in accordance with state and local rules and regulations.
	Damaged Pipes	Inlet or outlet piping damaged or broken and in need of repair.	Pipe repaired or replaced.

Table V-A.16: Maintenance Standards - Baffle Oil/Water Separators (API Type)					
Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed		
	Access Cover Damaged/Not Working	Cover cannot be opened, corrosion/deformation of cover.	Cover repaired to proper working specifications or replaced.		
	Vault Structure Damage - Includes Cracks in Walls Bottom, Damage to Frame and/or Top Slab	See <u>Table V-A.5:</u> <u>Maintenance Standards -</u> <u>Catch Basins</u> Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or evidence of soil particles entering through the cracks.	Vault replaced or repairs made so that vault meets design specifications and is structurally sound. Vault repaired so that no cracks exist wider than 1/4-inch at the joint of the inlet/outlet pipe.		
	Baffles	Baffles corroding, cracking, warping and/or showing signs of failure as determined by maintenance/inspection person.	Baffles repaired or replaced to specifications.		
	Access Ladder Damaged	Ladder is corroded or deteriorated, not functioning properly, not securely attached to structure wall, missing rungs, cracks, and misaligned.	Ladder replaced or repaired and meets specifications, and is safe to use as determined by		

Table V-A.16: Maintenance Standards - Baffle Oil/Water Separators						
(API Type)						

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
			inspection personnel.